Skip to main content

Corrosion rate and pipe design

Corrosion is a serious issue. However, corrosion engineers are rarely asked about it during the designing of components. It is only when the components fail that people remember there are people who have studied corrosion for their whole life and would provide a solution. The design problems are really quite simple, and the loss of money could have been avoided had the company bothered to involve a corrosion engineer in the first place.

Let me illustrate this with an example of a factory near the sea.

Suppose a mild steel pipe is fitted inside the factory to transport 1 wt. % hydrochloric acid. The engineer has a choice between selecting pipes of 5 mm and 10 mm thickness. To save money, they go for the pipe with the 5 mm thickness because it has been 'successfully used by the other customers'. Over the course of a year, it is seen that the pipe has started leaking at certain places. Further investigation reveals that those sections have thinned to half of their thickness.

Now, a coupon test is carried out to assess the corrosion behaviour. The corrosion rate is calculated to be 2.5 mmpy, which means the alloy was prone to corrode and lose 2.5 mm of its thickness in one year. Hence, the corrosion rate in the design of this pipe should have been crucial in the beginning itself, because now the company has to bear the cost of not just the original pipe, but also the new pipe with greater thickness.

So, the company decides to go for a 10 mm thick pipe for the transportation in the enclosure.

It further decides that it will construct a piping system that enables the loading of the acid from outside the enclosure. Hence, it extends the pipe to the outside of the factory.

Sure enough, they are back to square one within a year, wondering what went wrong with the pipe outside the factory.

The answer was in the extra plans that they made. The recommendation of 10 mm diameter pipe was made for the pipe in the internal environment. The problem was in the extension of the pipe to the exterior.

The exterior of the pipe was exposed to the moisture and ions in the air. The corrosion rate of the steel in air is 2.5 mmpy. So now the pipe was undergoing an internal as well as an external corrosion. As a result, the total corrosion it was experiencing was once again 5 mmpy.

This led to the corrosion of the pipe on the exterior.

Comments

Popular posts from this blog

Corrosion risk planning - 2 - Above ground storage tanks - oil and gas- PART 2

 Above ground storage tanks - PART 2 9.      Splash plate corrosion at welds atmospheric corrosion coating damage, if applicable pitting due to chloride salt deposition in marine environment 10.      Spiral staircase corrosion at welds of individual bars and critical joints to the tank coating damage and delamination cracks near welds uniform corrosion at exposed surface near delamination galvanic corrosion near weld/staircase/tank interface due to dissimilar alloys 11.      Manometer corrosion of screws, nuts, and bolts used for attachment possible moisture penetration in case of cracks due to improper handling 12.      Manhole Internal corrosion due to water either as a moisture or as storage product External coating damage due to moisture penetration, dust, rainfall, UV radiation Coating damage at fixtures and edges galvanic corrosion at nuts and bolts due to dissimilar alloys atmospheric corrosion at area where coating...

Corrosion risk planning - 1 - Lead acid battery

Corrosion is a quality, environment, and safety issue. Hence, it has to come under the cope of integrated management system audits However at the moment, it is more or less considered a quality issue. As such, the general tendency is to solve corrosion issues as they come. Especially in new inventions, the foresight to look for potential corrosion risk gets lost in the attempt to focus and highlight the amazing qualities of the said inventions. Hence, I have initiated this series, where I will take a component and point out the potential corrosion and damage risk areas.  Here goes the first one - lead acid battery cell. (Source:https://opentextbc.ca/chemistry/chapter/17-5-batteries-and-fuel-cells/)  Protective casing -  effect of temperature + electrolyte + contamination in electrolyte on the polymer crevice corrosion at fixtures mechanical damage during handling leading to voids for moisture ingress and oxygen/electrolyte leakage Positive terminal - corrosion of the mate...

Practice quiz for coatings - 1

Practice, practice, practice... and you shall gain the certificate! So here goes a new series, where I will post quizzes on various corrosion and coating topics. This is for anyone who likes quizzes, and ESPECIALLY for those attempting exams! So here goes the first one!  Subscribe to this blog for updates!  Loading…