Skip to main content

Corrosion risk planning - 2 - Above ground storage tanks - oil and gas- PART 1

 Above ground storage tanks




1. Inner walls

      • Coating degradation
      • Corrosion due to water/dissolved oxygen
      • insufficient/damaged cathodic protection system
      • dissolved sacrificial anodes
2. Outer walls/roof
      • Atmospheric corrosion
      • coating degradation due to moisture + UV radiation + temperature
      • Erosion and wear due to wind and dust particles
      • biological growth at the bottom areas near soil
      • soil corrosion near the bottom

3. Pipes

      • Atmospheric corrosion
      • Coating degradation
      • mechanical failure
      • internal corrosion due to water/dissolved oxygen
      • crevice corrosion in areas facing away from atmosphere
      • corrosion at welds and joints
      • microbial corrosion at 6 o' clock positions
      • erosion corrosion at bends
4. Railing
      • Coating degradation
      • Wrong coating selection based on pure aesthetics
      • coating damage at joints and bends
      • corrosion at welds in the railing
      • crevice corrosion at fixtures
      • pitting corrosion

5. Breather valve

      • uniform corrosion/pitting depending on whether it is made up of carbon steel/stainless steel
      • Galvanic couple at the joining/welding point of valve to roof
      • corrosion after damage of galvanized layer
6. Spray nozzle
      • Crevice corrosion at orifices
      • clogging
      • erosion and mechanical damage at orifices and bends
      • crevice corrosion at fixtures

7. Manhole

      • corrosion at edges of cover
      • galvanic corrosion at contact points with neighbouring parts
      • pitting due to chloride ion contact
      • crevice corrosion at fixtures
      • pitting corrosion at welds
8. Lagging
      • pitting due to chloride ion contact
      • crevice corrosion at overlapping joints
      • water seepage at insufficiently bonded overlaps

Click here for part 2!

Comments

Popular posts from this blog

Corrosion risk planning - 1 - Lead acid battery

Corrosion is a quality, environment, and safety issue. Hence, it has to come under the cope of integrated management system audits However at the moment, it is more or less considered a quality issue. As such, the general tendency is to solve corrosion issues as they come. Especially in new inventions, the foresight to look for potential corrosion risk gets lost in the attempt to focus and highlight the amazing qualities of the said inventions. Hence, I have initiated this series, where I will take a component and point out the potential corrosion and damage risk areas.  Here goes the first one - lead acid battery cell. (Source:https://opentextbc.ca/chemistry/chapter/17-5-batteries-and-fuel-cells/)  Protective casing -  effect of temperature + electrolyte + contamination in electrolyte on the polymer crevice corrosion at fixtures mechanical damage during handling leading to voids for moisture ingress and oxygen/electrolyte leakage Positive terminal - corrosion of the mate...

The drain mystery

I recently moved to a new house. As expected, there was a lot of cleaning up to do. One of the tasks was the cleaning of the washbasin. Usually, the drain is a circular part with  5 to 6 holes for the water to flow out. What I saw was this - I have not had a chance to analyse the material of the drain. However, a quick search tells me that this is most probably stainless steel. The water that this drain is exposed to is the bore water. Thus, the drain has encountered a lot of chlorides. There is general as well as localized corrosion. The damage started off as a simple process of pitting. Pitting due to chlorides is one of the most common headaches for poor stainless steel. They break the passive oxide film, and reach the underlying fresh iron. This iron then reacts with the usual suspects (ions, oxygen, water) and forms what we see as the rust. As can be seen in the picture, the thin sections of the drain between the holes have disappeared in three places. This may have h...

Corrosion in fertilizer industry - 1.2 Elemental sulphur attack

WATCH THE VIDEO HERE OR READ ON BELOW!  Elemental sulphur attack is NOT sulphidation or hydrogen sulphide corrosion. It is an aqueous corrosion phenomenon. It considers two modes -  acidification of sulphur - formation of sulphuric acid 2.      direct cathodic reduction of sulphur with anodic dissolution of iron The lowering of pH is the main source of corrosion in both the methods. The phenomenon is temperature dependent. It increases with increase in temperature and becomes particularly severe above the melting point of sulphur (~112.8 degree Celsius). Hydrogen sulphide present in the petroleum may aggravate the sulphur attack by enhancing uniform pitting corrosion. Monoethylene glycol is used to prevent condensate formation ans may be present in traces in the feedstock petroleum. This enhances the sulphur attack in the form of uniform corrosion, and crevice corrosion. References:  Fang, Haitao, Brown, Bruce, Young, David, and Srdjan Nešic. "Investigation...